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SYNOPSIS 

This analysis of polymer rheology uses conditional probability distributions to describe 
the phase space dynamics of all macromolecules in a polymer melt. The result is a viscoplastic 
constitutive equation for the polymer stress. Using conditional probability distributions 
makes the use of a large number of bead-spring chains in the modeling system possible, 
but precludes evaluating the intermolecular contribution to the total stress. Both the kinetic 
and intramolecular contributions are evaluated for a system composed of an arbitrary 
number of bead-spring chains that interact with one another using molecular dispersion 
forces. The analysis predicts that the kinetic contribution is isotropic and the intramolecular 
contribution is viscoplastic. The intermolecular contribution is assumed negligible in com- 
parison to the intramolecular contribution because it results from physical bonds among 
chains, while the intramolecular contribution results from chemical bonds within a chain. 
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INTRODUCTION 

Molecular models of polymer melt rheology belong 
to either of two classes or are a combination of both. 
The network theories were the first to predict poly- 
mer rheology from a molecular viewpoint. To this 
class belongs such theories as Lodge’s rubberlike 
liquid’ and the various other adaptations of the 
classical theory of rubber elasticity.’ Appearing later 
were the phase space kinetic theories, best repre- 
sented by the work of Curtiss and Bird.3 The most 
well-known example of a hybrid theory is the “slip 
link network” model of Doi and Edward~.~  Although 
Curtiss and Bird3 show that the Doi-Edwards model 
is a limiting case of their theory, its derivation is 
very different. Tanner5 classifies the above-men- 
tioned theories as microstructural to distinguish 
them from the more empirical theories of continuum 
mechanics, such as the highly useful K-BKZ the- 
~ r y . ~ , ~  With such a diversity of theories, each useful 
in describing some aspect of polymer rheology, it 
seems unlikely that a new theory could differ much 
from those already proposed. This article presents 
a kinetic theory that shares the fundamental pos- 
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tulates of statistical mechanics with other kinetic 
theories, but beyond this little else. 

The present work has its origin in previous work 
of the author that attempted to remedy the flaw in 
the Rouse-Zimm theories of dilute polymer solutions 
by providing a mechanism through which the poly- 
mer could perturb the solvent.’ That work led to a 
viscoplastic constitutive equation for the polymer 
material functions in viscometric flow, which is, of 
course, better suited to describe concentrated solu- 
tions and melts. More importantly, it questioned the 
usefulness of modeling undiluted polymers using 
single-chain systems. 

Ideally, when applying the principles of statistical 
mechanics, the preferred microscopic system is 
composed of all of the molecules expected in the 
macroscopic system. Mathematical difficulties 
nearly always preclude this. For dilute polymer so- 
lutions, using a system containing only one bead- 
spring chain is realistic because interaction among 
macromolecules is unlikely. This is not true for un- 
diluted polymers. For them, one must account for 
the physical bonding among all chains. The theo- 
rist’s dilemma is to account for the intermolecular 
interactions expected in undiluted polymers without 
increasing the mathematical complexity of the 
model that would render it useless. 

Reptation’ is one mechanism by which theorists 
1809 
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account for physical bonding among polymer chains 
and still retain a workable theory. Both the Curtiss- 
Bird and Doi-Edwards theories use the concept of 
reptation, but in very different forms. The Curtiss- 
Bird theory is more similar to the present work. 

Curtiss and Bird3 begin their analysis in the most 
rigorous fashion possible: they model an undiluted 
polymer using a system containing all chains ex- 
pected in the polymer. To circumvent the tremen- 
dous mathematical difficulty that confronts all ki- 
netic theorists addressing this problem, Curtiss and 
Bird use a truncation approximation in the form of 
a tensorial Stokes’ law. That is, they reduce the 
problem from one in the phase space of all the chains 
to one in the phase space of a single chain by de- 
scribing the frictional drag experienced by any bead 
on the chain using Stokes’ law in anisotropic form. 
Their theory also provides for anisotropic Brownian 
motion of the beads. This landmark accomplishment 
makes possible describing undiluted polymers with 
the computational ease once available only for dilute 
solutions. As with any approximation, it is not per- 
fect, but points in the direction of further progress. 

Although a tensorial Stokes’ law enables modeling 
the physical bonds among chains, it does not enable 
modeling the intermolecular contribution to the to- 
tal stress. This is because the intermolecular con- 
tribution cannot be described using single-chain 
probability distributions. However, it is believed that 
the intermolecular contribution is negligible in 
comparison to the intramolecular contribution be- 
cause intramolecular forces are far stronger than 
intermolecular ones. 

Describing undiluted polymer using a single-chain 
system, enhanced with anisotropic Brownian motion 
and hydrodynamic drag, predicts that both the ki- 
netic and intramolecular contributions can be an- 
isotropic. While anisotropic predictions for the in- 
tramolecular contribution are intuitively satisfac- 
tory, using anisotropic predictions for the kinetic 
contribution is less satisfactory. It is unfortunate 
that intuition is all there is to rely upon regarding 
this matter. Experiments have never attempted to 
distinguish among the various contributions to the 
total stress. While rheologists know that polymer 
solutions and melts exhibit normal stress anisotropy, 
it is not known if this results from one, two, or all 
of the molecular contributions hypothesized to form 
the measured macroscopic stress. 

The author’s discomfort with the notion of an- 
isotropic kinetic contributions stems from the belief 
that, no matter how restricted the motion of any 
one macromolecule may be, the net motion of all 
chains should be isotropic unless the space they oc- 

cupy has a preferred direction, such as that caused 
by an external force field. Thus, it seems necessary 
to consider the impediments to motion of all mac- 
romolecules in the polymer to accurately assess the 
kinetic contribution. As stated before, mathematical 
difficulties preclude describing the dynamics of all 
chains using one many-chain probability distribu- 
tion over the entire phase space. To overcome this, 
using conditional probability distributions is pro- 
posed. 

The present analysis describes the dynamics of 
each chain present in a polymer melt using a con- 
ditional probability distribution. Each distribution 
function is parametrically dependent upon the dy- 
namic state of all other chains. While this approach 
has the advantage of directly describing all chains 
present, it is still unable to predict intermolecular 
contributions to the total stress. Yet, it predicts the 
kinetic and the intramolecular contributions, and 
from these some measure of the drawback caused 
by using single-chain systems. 

Wagner and Demarmels” state that “viscoelastic 
stresses in polymer melts are mainly of entropic na- 
ture.” Any difference between the ability of the cur- 
rent approach and one using a single-chain system 
to predict the entropy of a polymer melt should 
therefore be a measure of the relative effectiveness 
of each approach. The superiority of using a many- 
chain system becomes evident upon comparison. 

The many-chain analysis used in this article also 
differs from those of single-chain systems because 
of its ability to simulate molecular-weight distri- 
butions. Although polymers usually possess a dis- 
tribution of molecular weights, theories based on 
single-chain systems treat polymers as though they 
were pure substances with a single molecular weight. 
In essence, such an approach assumes that the poly- 
mers’ molecular weights are distributed as the Dirac 
delta distribution. Using a many-chain system re- 
moves this restriction and enables simulating any 
weight distribution. 

The Development begins by describing the mo- 
lecular system and its notation. Having done this, 
the formulation for the entropy predicted by this 
system is contrasted with that of a single-chain sys- 
tem. Then, to further distinguish between the two 
approaches, the manner in which a many-chain sys- 
tem simulates arbitrary molecular weight distribu- 
tions is demonstrated. After these preliminary ex- 
positions, the system’s Lagrangian is presented. The 
Lagrangian is the heart of this analysis. It links the 
dynamics of each individual chain with all others. 
The importance of this becomes evident when eval- 
uating the peculiar velocity fields. 
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The author visualizes a peculiar velocity as a vec- 
tor field. The peculiar velocity fields describe the 
peculiar velocity of any bead on any chain anywhere 
in the real space of the bead. The vector fields are 
defined using an “internal” Lagrangian formed by 
all chains in the system. This procedure, using the 
internal Lagrangian, is similar to the virial theorem 
of Clausius.” 

Equipped with expressions for the peculiar ve- 
locities, the theorem of Liouville is supplemented 
with Lagrangian mechanics to form the governing 
equation for the phase space distribution function 
of each bead-spring chain. Then, using the method 
of moments, the kinetic and intramolecular contri- 
butions to the total stress are evaluated. Using lin- 
ear, conservative forces for definite predictions, 
these predictions are compared with those of a sin- 
gle-chain analysis. 

DEVELOPMENT 

The System 

The microscopic system consists of N macromole- 
cules. The macromolecules are modeled as linear, 
bead-spring chains. A lower case Latin subscript, 
e.g., i, j, etc., labels any quantity as belonging to a 
certain chain. Lower case Greek subscripts index 
either beads or springs on any chain. The number 
of beads on chain i is ai . The mass of any bead on 
chain i is mi. 

The dynamics of all chains using N single chain 
conditional probability distributions is described. 
The phase space distribution (PSD) function of 
chain i is denoted by fi. Each PSD describes the 
dynamics of one chain in its own phase space. The 
dynamic state of any chain is parametrically depen- 
dent upon the state of all other chains. 

The position vector of bead p on chain i is rPi. 
Its velocity is f,,i. The bulk flow velocity is u (r)  , 
where r is any position in the melt. The peculiar 
velocity of bead p on chain i is defined by the dif- 
ference: 

(1) v . = r . -  az ‘gz u(rFi)* 

System Entropy 

Wagner and Demarmels lo emphasize the importance 
of the entropic nature of viscoelastic stress toward 
developing a constitutive equation for polymer 
melts. To assess the effectiveness of modeling with 
a many-chain system, let us compare its prediction 
for the entropy with one based on a single-chain 
system. 

When using a single-chain system, the chain rep- 
resents any of the N chains presumed to exist in the 
polymer melt. Let a be the number of beads on that 
chain, and f be its PSD function, Then, the entropy 
for the entire melt is 

c r c  0 

where kB is Boltzmann’s constant, V is the permis- 
sible domain of the configuration space of a single 
bead, and D is that for the velocity space. 

Let h designate In( f ), and \()\ designate the 
phase space average operator. Using this shorthand 
notation, eq. ( 2 )  becomes 

Now, modeling the same polymer melt using a 
system containing N bead-spring chains each de- 
scribed by a conditional PSD, the entropy becomes: 

Let hk designate In( fk) then, using shorthand no- 
tation, eq. (4) becomes: 

Comparing eq. ( 3 )  with (5) shows that the en- 
tropy predictions for the two approaches are iden- 
tical only when \( hk)\ = \( h) \  for k = 1,2 ,  3, . . . 
N .  That is, the two approaches are equivalent, as 
far as the entropy is concerned, when the dynamic 
behavior of all chains is the same. One case where 
this condition is not satisfied is when the polymer 
melt possesses any molecular weight distribution 
other than the Dirac delta distribution. Using a 
many-chain system has the advantage of simulating 
any molecular weight distribution, and here we see 
that this influences the prediction for the system’s 
total entropy. 

Molecular Weight Distributions 

The mass, and therefore the molecular weight, of 
chain i is aimi. Each chain is a distinct species. Al- 
though there is only one molecule of species i, both 
ai and mi are arbitrary functions of i. One may vary 
ai independently of mi, but only their product in- 
fluences the molecular weight distribution. To see 
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this more clearly, consider the definitions of the 
number average and weight average molecular 
weight. 

The number average molecular weight for this 
system is: 

N 

M N  = 2 a i m i / N .  ( 6 )  
i= 1 

The weight average is: 

The ratio of the two is a measure of the polydisper- 
sity of the molecular weight distribution: 

In eqs. ( 6 ) ,  ( 7 ) , and ( 8 ) ,  ai and mi always appear 
as their product with one another. For simulating 
molecular weight distributions one need only vary 
the product ami as a function of i. However, it may 
prove useful to vary ai and mi independently of one 
another when simulating other properties of the 
polymer melt. In those cases it may be useful to vary 
ai to describe the polymer's degree of polymeriza- 
tion, and mi to describe the repeating unit, that is, 
the monomer. 

The Lagrangian 

The Lagrangian is the fundamental quantity that 
links the dynamics of all chains. Although a separate 
PSD function describes the dynamics for each chain 
individually, all chains share the same Lagrangian, 
which describes the system as a whole. The Lagran- 
gian is formed by subtracting the total potential en- 
ergy of the system from its total kinetic energy. For 
the many-chain system, it takes the form 

where r is the intermolecular potential, @ is the in- 
tramolecular potential, and E is an external poten- 
tial. 

The intermolecular potential acts among beads 
on different chains. It has the general functional 
form 

where the braces signify the set of values contained 
within. 

The intramolecular potential acts between adja- 
cent beads on any one chain. Its functional depen- 
dence may be represented as: 

where the subscript i appears outside the braces to 
indicate the set of values belonging only to chain i. 

The external potential corresponds to any energy 
field that acts on any bead on any chain relative to 
some external body, that is, a body not contained 
within the system. Its functional dependence is 

N N oi 

E = C Ei = 2 2 E p i ( r p i ) .  ( 1 2 )  
i= 1 i = l  p = l  

That is, the external body acts on any bead inde- 
pendently of all others. 

The macroscopic kinetic energy of the system 
consists solely of that relating to the visible motion 
of the melt: 

Let Em represent the macroscopic counterpart to 
any long-range external potential that acts on the 
system. Note that only a long-range external poten- 
tial, such as that caused by gravity, has a macro- 
scopic counterpart. A short-range external potential, 
such as a wall potential, does not. 

Equating the macroscopic counterpart of the La- 
grangian with its ensemble average, and using the 
shorthand notation introduced earlier, yields: 

Taking the ensemble average of eq. (9)  yields: 

l N  

2 i = l  
\(L)\ = - 2 a i m i u - u  - Em + \(L')\ ( 1 5 )  

where 



Name L' the system's internal Lagrangian. Sub- 
tracting eq. (14) from (15) yields: 

\(L')\ = 0. (17) 

Because \ ( ) \ signifies an ensemble average over an 
arbitrary phase space, set L' = 0 to satisfy eq. ( 17). 
Equating the internal Lagrangian to zero forms a 
conservation equation that links the kinetic energy 
of the peculiar velocities with the intra-system po- 
tential energy. It defines the peculiar velocity fields. 

Peculiar Velocity Fields 

A peculiar velocity is a vector field. Because a many- 
chain system uses all molecules expected in a poly- 
mer melt, the author believes that all molecular in- 
teractions should be conservative. This suggests that 
the peculiar velocities are irrotational fields, and 
therefore derivable from a scalar velocity potential. 
Let 4 be the peculiar velocity potential. Then the 
peculiar velocities are given by: 

Using ( 18) in ( 16),  and equating the internal La- 
grangian to zero, yields: 

Equation (19) is a nonlinear, first order, partial dif- 
ferential equation for 4. Not having an established 
procedure for solving this nonlinear equation, re- 
write it as though it were linear: 

where 

The method of characteristics, applied to eq. (20), 
suggests 

dt = dr,,i/uWi = d4 / [2 ( I '+  @ ) I  (22) 

where t is a parameter measured along a character- 
istic line. Integrating along the characteristic lines 
yields: 
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r . = J  ,, dt api (23a) 

4 = 2 d t ( F + @ ) .  ( 2% 1 s 
Now, differentiating (23b) with respect to rNi yields: 

d$/drpi = 2( r + @ ) d t / d r P i .  (24) 

Summing eq. (23a) over all p and i, then invert- 
ing, yields the function 

t = t < { r , i > ) .  

It follows then, that: 

dt/dr,i = cuTdt/dr,i 

where: 

N 

(YT= 2 aj 
J = l  

is the total number of beads in the system. 
Using (26) in (24) yields: 

d4/dr,i = 2 ( r  + @)/(cuTa,i) .  

Using the definition of the api in (28) yields: 

(d4/drPi) '  = 2 ( r  + cP)/(aTmi) .  

Hence, the magnitude of a peculiar velocity is 

To obtain an implicit relation for 4, integrate (29) 
with respect to rfii to find 

where F (  { roj} ) is a constant of the integration for 
13 not equal to p or j not equal to i. Taking the gra- 
dient of (31) yields: 

v pl .u pl . = - (  r + + ) / ( w m i ) s  (32) 

where 6 is the unit tensor. Equations ( 30) and (32) 
give t h i  necessary information regarding the pecu- 
liar velocity fields. 
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Lagrangian Mechanics and the Liouville Theorem 

The basis for this development is the Liouville theo- 
rem. Each of the N conditional probability distri- 
butions, f i  , satisfies the Liouville equation, each in 
its own respective phase space: 

m i  

d f i / d t  = -2 [ d / d r p i . f i r p i  + d / d r p i - f i ? f l i ]  (33)  
p=l 

for chains i = 1, 2, 3, . . . N ,  and where t represents 
time. 

Supplement the Liouville equation with Lagran- 
gian mechanics to relate the forces to the acceler- 
ations. For each bead there is a Lagrangian equation 
of motion, 

(34)  d ( a L / a k p i ) / d t  - a L / d r p i  = 0. 

Using the Lagrangian function of eq. (9)  in (34 ) ,  
and assuming that the energy potentials are con- 
servative, yields: 

mi?pi = -d( r + + E ) / d r f l i  (35)  

where 

+ d k p i / d r p i  - rpi)  (36)  

is reference frame indifferent. 

definition of the substantial derivative, 
Substituting eq. (35)  into (33 ) ,  and using the 

ai 

D / D t  = d / d t  + 2 u ( r p j ) * d / d r p i  (37)  
p=l 

yields the governing equation for the PSD: 

D f i / D t  = -C d / d r p i . f i u p j  
p=l 

mi 

+ 1/mi d ( r  + + E ) / d r p i  

[ dfi /dupi + ( d u / d r p i ) - '  * dfi / d r p i ] .  (38)  

Equation (38)  is subject to the boundary condi- 
tions that f i  is finite on Vand Q, and vanishes outside 
of them. If one could solve eq. (38) ,  subject to these 
conditions, one would have the information needed 
to evaluate any statistical property of the system. 
Doing so is the most desirable approach, but also 
formidable. Rather than solve eq. (38)  directly, it is 

p=1 

customary to use the method of moments to evaluate 
those moments of the distribution needed to predict 
the various contributions to the polymer stress. 

Polymer Stress 

Describing a many-chain system using N conditional 
probability distributions precludes evaluating the 
intermolecular contribution to the total stress. The 
intermolecular contribution results from physical 
bonding among the chains, and should, therefore, 
be negligible in comparison to the intramolecular 
contribution, which results from chemical bonds 
within a chain. Analyses based on single-chain sys- 
tems have always implicitly assumed this. Note that 
this is not that physical bonds among chains are 
without effect. While their direct contribution is 
negligible, the physical bonds modify the kinetic and 
intramolecular contributions to the total stress. 
Keeping this in mind, the total stress in the melt is 

T = + u (39)  

where 
intramolecular contribution. 

motion of the beads. It is defined as 

is the kinetic contribution and u is the 

The kinetic contribution results from the peculiar 

i = l  8=1 i = l  8=1 

By definition, the kinetic contribution must be sym- 
metric. 

The intramolecular contribution results from the 
tension in the springs of the chains as they straddle 
a plane. It is defined as 

The primes indicate a transformation to normal co- 
ordinates. QSj is the spring vector, defined as 

where c3Or is Kronecker's delta. F8i is the force di- 
rected along the spring. For a conservative intra- 
molecular potential, it is given by 
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Note that, by its definition, the intramolecular con- 
tribution need not be symmetric. 

Kinetic Contribution 

The governing equation for the kinetic contribution 
is found by evaluating the appropriate moment of 
(38). Multiplying (38) with 

where 6 ( rsi - r )  is the Dirac delta distribution, and 
averaging over the entire phase space, yields 

N a; I- 

( d u / d r U i )  -'. (45) 

Consider each integration term on the right-hand 
side (rhs) of (45) separately. 

Applying chain-rule differentiation, and using 
shorthand notation, the first term becomes: 

Applying chain-rule differentiation to the second 
term shows that it vanishes because r + ip + E is 
not a function of the velocities. Chain-rule differ- 
entiation applied to the third term yields: 

ai 

-C \(usiusid2(I' + ip + E ) / d r p J d r p i ) \ :  
p = l  

Combining all terms yields: 

0; 

Da$f ) /Dt  = mi \ ( u w i . d ( u s i u e i ) / d r p i ) \  
p = l  

When neglecting all density gradients, one must 
set E = 0 on V because an effect of E is to create a 
density gradient. Use linear forces for both the intra- 
and intermolecular interactions. Let 

where H a n d  I are arbitrary (constant) second-order 
tensors. Taking H a n d  I independent of the indices 
p and i implies, without loss of generality, that all 
springs on all chains obey the same Hooke's law. 

Using eqs. (49) in (48) yields 

Assuming irrotational peculiar velocity fields, eqs. 
(30) and (32) show that 

Using eq. (51) in (50) yields 

Equation (52) is the governing equation for the ki- 
netic contribution when using linear forces and ir- 
rotational peculiar velocity fields. It predicts that 
the kinetic contribution to the total stress is iso- 
tropic. 
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Intramolecular Contribution 

Configuration Space Distribution 

As with the kinetic contribution, the governing 
equation for the intramolecular contribution is 
found using the method of moments. However, in- 
formation regarding the velocity space dynamics is 
not needed. Therefore, it is customary to average 
the governing equation for the PSD over the velocity 
space to form the governing equation for the con- 
figuration space distribution (CSD) . The intra- 
molecular contribution is then evaluated from mo- 
ments of the CSD. 

Let gi signify the CSD function for chain i. Define 
it as 

Averaging eq. ( 3 8 )  over the velocity yields: 

a; N a; c 

Consider each integration term on the rhs 
rately. 

( 5 3 )  

(54)  

sepa- 

Chain-rule differentiation shows that the first 
term is zero by definition of the peculiar velocity. 
Applying chain-rule differentiation to the second 
term shows that it vanishes because J? + @ + E is 
not a function of the peculiar velocities. By definition 
of the CSD, the third term reduces to 

Combining all terms yields: 

As is customary, transform the independent vari- 
ables from the set of bead coordinates { rpi}  to the 

set of internal, or spring, coordinates { Q o i }  , d = 1, 
2 , 3 , .  . . , ai - 1, and the center of mass coordinates, 
ri . The center of mass position vector for chain i is 
given by 

0; 

ri = 1/ai rPi. ( 5 7 )  
p=l 

Transform the bead position vectors to the spring 
vectors using 

Transforming variables in ( 5 6 ) ,  and neglecting 
any density variations in the melt, yields: 

d Q s i d ( r  + CP)/dQPi : ( d u / d r i ) - l  (59) 

where: 

is the Rouse matrix of dilute solution theory. Note 
that one must set E = 0 on V when assuming a 
uniform density. 

Method of Moments 

Define the configuration space average operator as 

N a: P N 

Multiplying eq. (59) with 

and averaging over the configuration space yields 
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Applying chain-rule differentiation several times 
to the integrand of (63),  rearranging, and using the 
operator of (61 ) , yields: 

where pi is defined as 

Chain Configuration Entropy 

Note that pi is the logarithm of a chain's CSD, while 
h i ,  used to evaluate the system's total entropy, is 
the logarithm of a chain's PSD. Having first aver- 
aged over the velocity space to form g i ,  & lost all 
information regarding the velocity space dynamics 
of chain i. Therefore, while -kB\(hi)\ can be 
viewed as one chain's total entropy, -kB\/3i\ must 
then be viewed as the chain's configuration entropy 
because the logarithmic and ensemble average op- 
erations do not commute. 

Transforming independent variables in eq. ( 64 ) 
to normal coordinates, using the orthogonal trans- 
formation of the Rouse matrix, yields' 

where ae, 0 = 1,2 ,3 ,  . . . , ai - 1, are the eigenvalues 

of the Rouse matrix and the primes signify eigen- 
vectors. 

From eq. (66) ,  if 

for i not equal to k ,  then the rhs of (66) vanishes 
and (66) becomes identical to the governing equa- 
tion for a: found for a single chain system.8 In ref. 
8, I' is the solvent-polymer intermolecular potential 
instead of the polymer-polymer intermolecular po- 
tential that it is here. Equation (67) says that the 
logarithm of the CSD function for any chain is not 
a function of the internal coordinates of any other 
chain. When this restriction is satisfied, as far as 
the intramolecular contribution is concerned, the 
analysis effectively reduces to one of modeling with 
a single chain. 

However, the basic premise of this analysis is that 
the dynamic state of any chain depends upon the 
state of other chains. Eq. (66) indicates that one 
must know Pi as a function of the internal coordi- 
nates of the other chains. To find the governing 
equation for P i ,  return to eq. (59) and divide it by 
gi  . In normal form, it becomes 

Solving (68) for P k  as a function of time and the 
internal coordinates of all chains is difficult. For- 
tunately, it is unnecessary because one need not 
know P k  in its entirety, but only its derivatives with 
respect to the internal coordinates of other chains. 
Therefore, follow this procedure: 

Rearrange eq. (68) by applying chain-rule differ- 
entiation to its rhs. Write the result as 

Restrict eq. (69) to a nonequilibrium stationary 
state. Rearrange and write the result as 
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Restrict r and @ to linear forces of the form 

Equation (70) is an implicit relation for P k ,  which 
one may solve using the method of direct substitu- 
tion. 

To form an initial guess, recall that at equilibrium 

where T is the absolute temperature and the factor 
1 / N  accounts for the fact that each of the N chains 
contributes 1 / N of the total. Therefore, use 

as the initial guess, where ck  is an unknown constant. 
The reason for using the unknown constant c k  will 
become clear. 

Using (72) in the rhs of eq. (70) yields 

Usually, one continues iterating until the output 
equals the input. However, only derivatives of P k  are 
needed, and when using linear forces this one iter- 
ation suffices. 

Differentiating eq. (73) with respect to Qhi 
yields 

where I ,  H ,  b, and d are constants. Note that I and 
Hare  not necessarily the same tensors used in (49). 
Then, using eqs. (75) in (74) yields 

for i not equal to 12. Equation (76) is identical to 
the result that one finds when differentiating the 
initial guess. Since one need not evaluate the case 
where i equals k ,  because it cancels itself in (66), 
this one iteration suffices by providing the deriva- 
tives that are needed. 

The factor c k  shows that one arrives at the result 
(76) only to within an unknown (constant) factor. 
Using (76) one finds 

The sum of (1 - 6 k i ) C k  over all k is just another 
constant. Let Gi designate it, then 

Short of actually solving for P k  in its entirety, Gi is 
unknown unless one uses the equilibrium values c k  

= 1 / N  to evaluate it. In that case, 

which for practical purposes is unity because N is a 
very large number. 

Returning to the governing equation for u:i, sub- 
stitute (78), and the linear force relations of ( 75), 
into (66) to find 

rniDu:i/Dt+ 2(a i  - 1 ) ( I +  H ) :  (au/dri)-'u:i 

+ a,\ (6a@/aQri + QTiH) 

- [ I -  ( Qri - b )  + H .  ( Q,i - d ) ]  \ : (du/ari)-'  
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Equation (80) is exact only for linear forces. Its left- 
hand side poses no problems because it is handled 
in the same manner as in ref. 8. However, the terms 
on the rhs are not present in the single-chain anal- 
ysis of ref. 8, and must now be evaluated. 

Rearranging (80) so that only unknown ensemble 
averages appear on the rhs yields: 

Equation (81 ) contains ensemble averages of three 
new quantities: 

Equilibrium Averaging Approximation 

All three moments in (82)  are of higher order than 
&. This is unfortunate because it means that one 
cannot obtain the governing equations for these en- 
semble averages, using the method of moments, 
without introducing even higher order moments. 
This is the so-called closure problem, the bane of 
the method of moments. Unable to evaluate the en- 
semble averages in (82) rigorously, one is forced to 
approximate. 

The three unknown averages result from the de- 
pendence of the dynamic state of any chain upon 
the internal coordinates of other chains. These av- 

erages do not appear when a single-chain system is 
used. The terms represent an improvement upon a 
single-chain analysis furnished by using a many- 
chain system. Therefore, even though one must ap- 
proximate these averages, they still represent an 
improvement over a single-chain analysis. 

Two remedies are to either assume closure ap- 
proximations, that is, represent higher order mo- 
ments using known lower order ones, or evaluate 
the averages using a known probability distribution, 
such as that of the equilibrium state. A closure ap- 
proximation is really a constitutive equation. Unless 
it is based upon experimental observation or theo- 
retical principles, it has no justification other than 
mathematical expediency. On the other hand, eval- 
uating the ensemble averages using the equilibrium 
distribution approximates the exact quantities for 
small departures from equilibrium. Viewing these 
terms as corrections to the predictive capability of 
single-chain analyses, equilibrium averaging seems 
reasonable. 

A t  equilibrium, the CSD function for any chain 
is proportional to 

The linear force relations of (75) yield quadratic 
potentials of the form 

to within an additive constant. To find the propor- 
tionality constant for (83 ) ,  multiply the N CSD 
functions together such that 

where C,, is the normalization constant at equilib- 
rium. Define C,, using: 

Equation (86) is greatly simplified if all chains 
have the same number of beads, that is, ai = a for 
all i. As noted before, to simulate arbitrary molecular 
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weight distributions, one need only vary the product 
ami as a function of i. Therefore, giving all chains 
the same number of beads retains that capability. 
With this simplification, and using eqs. (84), eq. 
(86) becomes 

r rcu 

The normalization constant Ceq must be finite for 
all values of the force parameters I, H ,  b, and d, if 
it is to be used to evaluate any statistical property. 
For the integral of (85) to exist, the rate of decay 
caused by the quadratic terms within the exponential 
function of the integrand must be greater than the 
rate of growth of all other terms. This means that 
there cannot be any bilinear terms of the Cartesian 
components such as QxQy, QyQz, and Q,Q,. This 
places the following constraints on the Cartesian 
components of I and H 

Ixy + Hxy + Iyx + Hyx = 0 

I,, + Hyz + Izy + Hzy = 0 

I,, + H,, + I,, + H,, = 0. 

( 88a ) 

( 88b ) 

( 88c ) 

These three constraints are one way of saying that 
the sum I + H must be formed by the sum of a 
diagonal matrix and a skew-symmetric matrix. 

Restricting I + H with eqs. (88) and integrating 
(87) yields 

where 

Having evaluated the normalization constant, it 
can now be used in (85) to evaluate the ensemble 
averages of (82 ) . Rather than evaluating all com- 
ponents of (82) , one need only evaluate those com- 
ponents pertinent to the flow field. Assuming ho- 
mogeneous flow with the gradient 

where + is the shear rate, requires evaluating only 
the following components of (82 ) : 

Constitutive Equation 

To simplify the very lengthy expressions that result 
from the integrations defining the ensemble aver- 
ages, use the following notation: 

The subscript I on W ,  U, and J indicates that part 
which corresponds to the contribution when 8 equals 
7. Conversely, the subscript 11 designates the con- 
tribution when $ does not equal 7. The subscript eq 
on the ensemble average operator indicates equilib- 
rium averaging. Note that W and J are second-order 
tensors, but U is a vector. 

Evaluating the ensemble averages using the no- 
tation of eqs. (95) for homogeneous flow, and re- 
stricting all chains to have the same number of 
beads, reduces eq. (81 ) to: 
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where the elements of the tensors Wand J and of 
the vector U are given in the Appendix. 

Equation (96) is similar in form to the prediction 
of the single chain analysis:' The shear rate mul- 
tiples only the time derivative term, thereby pre- 
dicting viscoplasticity. Consequently, the multi- 
chain analysis yields constitutive equations of the 
same character as the single-chain analysis, differing 
only in that there are more terms containing more 
physical parameters. As it is the custom in polymer 
melt rheology to fit the parameters to experimental 
data, the multi-chain analysis has shown that the 
use of a single-chain analysis is valid, although it 
must remain semi-empirical. 

CONCLUSIONS 

This analysis predicts the rheological behavior of a 
polymer melt using a microscopic system composed 
of all the macromolecules expected in the melt. Un- 
like a single-chain system, using a many chain sys- 
tem enables one to describe molecular weight dis- 
tributions. As a result, the prediction for the system's 
entropy differs from that of a single-chain system. 
The analysis shows that the chain configuration en- 
tropy has a marked effect upon the intramolecular 
contribution to the total stress. 

Describing the intramolecular contribution using 
a many-chain system links the dynamic state of all 
chains. Specifically, the CSD of any chain depends 
upon the configuration of all other chains. This link 
is entropic, resulting from the logarithms of all other 
CSD functions. Without this coupling, ensemble 
averages over any one chain suffice to describe the 
system, and the analysis reduces to that of a single- 
chain system. 

Regardless of the entropic coupling, the analysis 
predicts a viscoplastic intramolecular contribution 
just as the single chain system does. Although it was 
necessary to average three moments in the consti- 
tutive equation for the intramolecular contribution 

using the equilibrium CSD, doing so has no effect 
on this fundamental characteristic of the analysis. 
The prediction of the many-chain system would dif- 
fer from that of the single-chain system only in the 
time constants of a transient response and the 
steady-state values of the material functions. The 
prediction for viscoplasticity appears to be founded 
at  a more fundamental level. 

The prediction for the kinetic contribution to the 
total stress is little changed in form from that of the 
single-chain system, but the dynamic state of all 
chains influences this contribution from any bead 
on any chain. Each bead affects the motion of all 
other beads by contributing to form the Lagrangian 
of the entire system. Yet, for irrotational peculiar 
velocity fields, the many-chain system predicts that 
the kinetic contribution is isotropic just as the sin- 
gle-chain system does. 

The significant factor deciding the nature of the 
kinetic contribution appears to be the field structure 
of the peculiar velocities. Even when using a many- 
chain system, a complete understanding of the 
structure of the peculiar velocity fields is lacking. 
However, using all chains expected in the macro- 
scopic system strongly suggests that the peculiar ve- 
locity fields be irrotational. 

To the extent that bead-spring chains represent 
macromolecules, a many-chain system must use only 
conservative molecular interactions because, oth- 
erwise, they would dissipate the energy of all beads 
until it vanished. That is, one expects the energy of 
the beads to transform from kinetic to potential en- 
ergy, and vice versa, but to no other form. Irrota- 
tional peculiar velocities are consistent with this 
notion because a theorem from vector analysis states 
that the work integral of an irrotational field taken 
around any closed curve is zero. That is, irrotational 
peculiar velocity fields have zero circulation, thereby 
automatically satisfying Kelvin's circulation theo- 
rem for all time and guaranteeing that no dissipation 
occurs. 

Unless describing a many-chain system using a 
single, many-chain probability distribution leads to 
different results, restricting the peculiar velocities 
to irrotational fields predicts only isotropic kinetic 
contributions. As mentioned in previous work,' the 
kinetic contribution would almost certainly be an- 
isotropic if the peculiar velocity fields possessed a 
rotational component. To evaluate whether aniso- 
tropic kinetic contributions are possible, the issue 
reduces to whether or not one can include a rota- 
tional component for the peculiar velocity fields and 
still maintain conservative molecular interactions. 
That is, if one provides for a rotational component 
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to the peculiar velocity fields, does there exist a 
theorem or relation that conserves the energy of the 
beads? 

The question remains whether it is necessary, or 
just sufficient, to restrict the peculiar velocities to 
irrotational fields to conserve the energy of the 
beads. According to a well-known theorem in vector 
analysis, any vector field may be uniquely described 
as the sum of the gradient of a scalar potential and 
the curl of a vector potential, if the source densities 
are zero at infinity. Therefore, in principle, a vector 
potential may exist, but it could not be defined solely 
by the internal Lagrangian. At least three other de- 
fining relations would have to be found one for each 
component of the vector potential. These defining 
relations must guarantee that the energy of all beads 
is conserved. However, until it can be shown that 
these conditions cannot be met, one cannot rule out 
the possibility of peculiar velocities with a rotational 
component. 

At this time, it is moot to argue for or against 
predictions of anisotropic kinetic contributions be- 
cause experiments have yet to distinguish among 
the various contributions to the total stress. Only 
predictions for the total stress matter, and even then 
only the material functions that can be measured. 
However, this issue is important from a fundamental 
viewpoint because it can help explain the structure 
of the peculiar velocity fields. And the peculiar ve- 
locities are the sine qua non of all kinetic theories. 

APPENDIX 

Here are the elements of the tensors W and J and 
those of the vector Uthat  appear in eq. (96). These 
elements represent the contribution resulting from 
Lagrangian coupling among the polymer chains. For 
a single-chain analysis the elements of these quan- 
tities are all zero. 
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